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Abstract—Jamming attacks and unintentional radio interfer-
ence are one of the most urgent threats harming the dependability
of wireless communication and endangering the successful deploy-
ment of pervasive applications built on top of wireless networks.
Unlike the traditional approaches focusing on developing jamming
defense techniques without considering the location of jammers,
we take a different viewpoint that the jammers’ position should
be identified and exploited for building a wide range of defense
strategies to alleviate jamming. In this paper, we address the
problem of localizing multiple jamming attackers coexisting in
wireless networks by leveraging the network topology changes
caused by jamming. We systematically analyze the jamming effects
and develop a framework that can partition network topology into
clusters and can successfully estimate the positions of multiple
jammers even when their jamming areas are overlapping. Our
experiments on a multi-hop network setup using MicaZ sensor
nodes validate the feasibility of real-time collection of network
topology changes under jamming and our extensive simulation
results demonstrate that our approach is highly effective in
localizing multiple attackers with or without the prior knowledge
of the order that the jammers are turned on.

I. INTRODUCTION

The broadcast-based communication has made wireless net-
works vulnerable to jamming attacks and to radio interference.
The increasingly flexible programming interfaces of commodity
devices (e.g., software defined radios) have enabled adver-
saries to build jammers with little effort to disturb network
communication. Even without malicious jammers, the tension
between the proliferation of wireless technologies and the
limited number of unlicensed bands has made and will continue
to make the radio environment crowded, causing unintentional
radio interference across devices that leverage different wireless
technologies but share the same spectrum, e.g., WiFi and Blue-
tooth. Multiple instances of jamming attacks and unintentional
radio interference may co-exist in the network, and they will
continue to be one of the most urgent threats harming the
dependability of wireless communication and endangering the
successful deployment of pervasive applications built on top
of wireless networks. Since both jamming attacks and radio
interference can prevent networks from delivering information,
we use the term jamming to refer both threats in this paper.

To ensure the dependability of wireless communication,
much work has been done to detect and defend against jam-
ming attacks. In terms of detection, single-statistics-based and
consistent-check-based algorithms [1] have been proposed. The
existing countermeasures for coping with jamming include
two types: the proactive conventional physical-layer techniques

that provide resilience to interference by employing advanced
transceivers [2], e.g., frequency hopping, and the reactive non-
physical-layer strategies that defend against jamming leveraging
MAC or network layer mechanisms [3], [4], e.g., adaptive error
correcting codes, channel adaption [4].

Those defense technologies provide useful methods to allevi-
ate jamming. However, they primarily reply on the network to
passively adjust themselves without leveraging the information
of the jammer. We take a different viewpoint, that is, networks
should identify the physical location of a jammer and use
such information to actively exploit a wide range of defense
strategies in various layers. For instance, a routing protocol
can choose a route that does not traverse the jammed region
to avoid wasting resources caused by failed packet deliveries.
Furthermore, once a jammer’s location is identified, one can
eliminate the jammer from the network by neutralizing it. This
approach is especially useful for coping with an unintentional
radio interferer that is turned on accidentally. In light of the
benefits, in this paper, we address the problem of localizing the
position of jammers when multiple jamming attackers coexist
in a wireless network.

Although there have been active research in the area of
localizing a wireless device [5]–[7], most of those localization
schemes are inapplicable to jamming scenarios. For instance,
many localization schemes require the wireless device to be
equipped with specialized hardware [5], [8], e.g., ultrasound or
infrared, or utilize signals transmitted from wireless devices
to perform localization. Unfortunately, the jammer will not
cooperate and the jamming signal is usually embedded in the
legal signal and thus, is hard to extract, making the signal-based
and special-hardware-based approaches inapplicable.

In the area of localizing jammers, a few algorithms [9], [10]
have been proposed to localize one jammer. Without presenting
performance evaluation, Pelechrinis et al. [10] proposed to
localize the jammer by performing gradient descent search
based on packet delivery rate. Liu et al. [9], [11] have designed
two algorithms that utilize the network topology changes caused
by jamming attacks to estimate the jammer’s position: one is
a virtual-force based jammer localization algorithm [9] and the
other is a least-squares-based localization scheme [11].

Prior work can localize one jammer, but will not perform
well in the presence of multiple jammers, which can cause
severe network communication disturbance on a large scale.
Furthermore, multiple jammers may have overlapping jamming
regions and form only one connected jammed area. In this case,
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prior work cannot identify the locations of all jammers. In this
paper, we systematically studied the effects of multiple jammers
and developed a framework utilizing network topology changes
under jamming to locate multiple jamming attackers. The two
main components in our framework, namely automatic network
topology partitioner and intelligent multi-jammer localizer,
work together to derive different categories of node clusters
and achieve high localization accuracy even under overlapping
jammed areas.

We conducted real experiments using MicaZ sensor nodes in
a multi-hop network setup with two jammers. Our experimental
results confirmed that we are able to collect the network topol-
ogy changes in spite of the disturbed network communication
under jamming. We further performed simulation under various
large-scale network setups. Our extensive simulation results
demonstrated that our framework can effectively partition the
network topology under the presence of multiple jamming
attackers and further localize these jammers with high accuracy
with or without the prior knowledge of the order that the
jammers are turned on.

The remainder of the paper is organized as follows: We first
discuss our work in the context of existing studies in Section II.
We then specify our jamming attack model and analyze the
jamming effects in Section III. The feasibility of our approach
utilizing the network topology changes is validated through
real experiments in Section IV. We present our framework
and algorithms that are developed to partition the network
topology and localize multiple jamming attackers in Section V.
We next conduct extensive simulations to validate our approach
in Section VI. Finally, we conclude our work in Section VII.

II. RELATED WORK

Jamming and radio interference are known threats and have
attracted much attention. Traditionally, jamming is addressed
through conventional PHY-layer communication techniques,
e.g. spreading techniques. Those PHY-layer techniques pro-
vide resilience to interference [2] at the expense of advanced
transceivers. Jamming detection was studied by Xu et al. [1]
in the context of commodity wireless devices, and was also
studied in the context of sensor networks [12]. Our work
focuses on localizing jammers after jamming attacks have been
identified using those jamming detection strategies.

Countermeasures for coping with jamming in commodity
wireless networks have been intensively investigated. Defense
strategies include the use of error correcting codes [3] to
increase the likelihood of decoding corrupted packets, channel
hopping [4] to adapt the working channel to escape from
jamming, and wormhole-based anti-jamming techniques [13].

Wireless localization has been an active area, attracting many
attentions. Based on localization infrastructure, infrared [5] and
ultrasound [8] are employed to perform localization, both of
which need to deploy specialized infrastructure for localization.
Further, using received signal strength (RSS) [7] is an attractive
approach because it can reuse the existing wireless infrastruc-
ture. Based on the localization methodology, the localization
algorithms can be categorized into range-based and range-free.

Range-based algorithms involve estimating distance to anchor
points with known locations by utilizing the measurement
of various physical properties, such as RSS [7], Time Of
Arrival [14], and Time Difference of Arrival [8]. Range-free al-
gorithms [15] use coarser metrics to place bounds on candidate
positions. However, most of these approaches are inapplicable
to localize jammers as the jammer will not cooperate and the
regular radio signal is disturbed under jamming.

Recently, a few work has been focused on determining
the location of one jammer. Without presenting performance
evaluation, Pelechrinis et al. [10] proposed to localize the jam-
ming by measuring packet delivery rate (PDR) and performing
gradient decent search. Liu et al. [9] utilized the network
topology changes caused by jamming attacks and estimated the
jammer’s position by introducing the concept of virtual forces.
The virtual forces are derived from the node states and can
guide the estimated location of the jammer towards its true
position iteratively. Both algorithms [9], [10] require to search
for the jammer location iteratively. To localize the jammer in
one round, Liu et al. [11] developed a lease-squares-based
algorithm that leverages the change of hearing range caused
by jammming. Aforementioned algorithms can only localize
one jammer and may fail to yield jammers’ positions when
multiple ones are present. In this paper, we address the problem
of localizing multiple jamming attackers.

III. MODEL

In this section, we first present the adversary model and
network model that our work focuses on. We then provide an
analysis of jamming effects when multiple jammers are present
in the network.

A. Adversary Model

We consider multiple jammers present in the network and
focus on localizing each of them. Regardless of the attack
strategies, the consequences of various jammers are the same:
For those nodes which are located near a jammer, their com-
munication is severely disrupted, whereas a node which is
far away from a jammer may not be affected by the jammer
at all. Thus, we do not investigate diverse jamming attack
philosophies but assume that jammers transmit at the same and
fixed power level. Without loss of generality, we consider the
scenarios that two jammers transmit at the same power level and
become active either sequentially or simultaneously. The case
that two jammers are turned on simultaneously presents greater
challenges than the sequential case, since the former does not
reveal any information of the individual jammer but all of them
as a whole. We note that our strategies can be extended easily
to localize more than two jammers.

B. Network Model

We design our solutions for a category of wireless networks
with the following characteristics.

• Stationary. The network nodes that we consider in this
work are stationary after their deployment. We will inves-
tigate mobile nodes in our future works.
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• Neighbor-Aware. Each node is equipped with an omnidi-
rectional antenna and transmits at the same transmission
power level. Thus, every node shares the same commu-
nication range and can only receive messages from nodes
that are within its communication range. We call the nodes
that can send messages to node B B’s neighbors. Each
node maintains a neighbor table containing its neighbor
IDs and tracks the changes in its neighbor table. Such a
neighbor table is supported by most routing protocols and
can be easily implemented by periodically broadcasting
beacons.

• Location-Aware. Each node is aware of its own location.
This is reasonable as most of wireless devices are equipped
with GPS or some other approximate but less burdensome
localization algorithms [6], [7].

• Able to Detect Jamming. In this work, we focus on
locating jammers after they are detected. Thus, we assume
the network is able to identify a jamming attack and
the number of jammers, leveraging the existing jamming
detection approaches [1], [16].

C. Analysis of Jamming Effects

1) General Jamming Effects: To provide a complete de-
piction of the complex relationships between the transmission
power of a wireless node and a jammer, we consider the signal-
to-noise-ratio (SNR) model. In a jamming scenario, the “noise”
includes ambient noise PN and jamming signals PJ , and the
SNR can be expressed as following by using a sender-receiver
pair (S, R):

SNR =
PSR

PN + PJR
(1)

where PSR is the received power of the desired signal, PN is
the noise, and PJR is the received power level of the jamming
signal. We define the link state lij from node ni to nj using
a threshold model. Specifically, the link state from node ni to
nj is

lij =
{

0 SNRij ≤ γ0

1 SNRij > γ0
(2)

where SNRij is the SNR measured at node nj when node
ni is transmitting and all other network nodes remain silent.
γo is the threshold SNR, above which packets can be received
successfully, and we call it Decodable SNR threshold [11].

When jammers are present in the network, the network nodes
can be classified into three categories according to the impact of
jamming: unaffected node NU , jammed node NJ , and boundary
node NB. Let Nbr{ni} be the set of neighbors of node ni

before any jammer becomes active: and we formally derive the
SNR-based jamming model as follows,

• Unaffected node. NU = {nu|∀ni ∈ Nbr{nu}, SNRiu >
γo}. A node is unaffected, if it can receive packets from
all of its neighbors.

• Jammed node. NJ = {nj |∀ni ∈ NU , Lij = 0}.
Essentially, a node nj is jammed if it cannot receive
messages from any of the unaffected nodes. We note that
two jammed nodes may still be able to communicate with

J1R

SR

J

S

J2R

J

Fig. 1. An illustration of a multi-jammer scenario in a wireless network.

each other. However, they cannot communicate with any
of the unaffected nodes.

• Boundary node. NB = {nb|(∃ni ∈ NU , Lib =
1) and (∀ni ∈ Nbr{nb}∩NJ , SNRib ≤ γo)}. A bound-
ary node can receive packets from part of its neighbors
but not from all its neighbors.

2) Effects of Multiple Jammers: In the scenarios where
multiple jammers are present, the jammers can be turned on
either sequentially or simultaneously. We analyze the jamming
effects by considering these two typical ways of conducting
jamming attacks. Figure 1 depicts a network set up with one
sender-receiver pair (S, R) and two jammers (J1, J2). We use
this setup to illustrate the different jamming effects when two
jammers are turned on either sequentially or simultaneously.

Sequentially Turning On Jammers. When the two jammers
J1 and J2 are turned on sequentially, the network communica-
tion will experience changes and disruptions twice. When the
first jammer J1 is turned on, according to Equation 1, the SNR
at receiver R in the presence of Jammer J1 becomes:

SNR1 =
PSR

PN + PJ1R
, (3)

and the link state from node ni to nj is still defined by
Equation 2.

After the second jammer J2 is turned on, the SNR-based
jamming model at R is changed to:

SNR1,2 =
PSR

PN + PJ1R + PJ2R
. (4)

The link state from node ni to nj may change or remain the
same depending on SNR. In total, there are three cases:

lij =

⎧⎪⎨
⎪⎩

0 → 0 SNR1
ij ≤ γ0 → SNR1,2

ij ≤ γ0

1 → 0 SNR1
ij > γ0 → SNR1,2

ij ≤ γ0

1 → 1 SNR1
ij > γ0 → SNR1,2

ij > γ0

(5)

For instance, a link state lij changes from 1 to 0, if the SNR
from ni to nj was larger than γ0 but drops below γ0 after J2

is turned on.
Simultaneously Turning On Jammers. When two jammers

are turned on simultaneously, the SNR at receiver R is similar
to the SNR after both jammers are turned on sequentially, and
the link state from node ni to nj is

lij =

{
0 SNR1,2

ij ≤ γ0

1 SNR1,2
ij > γ0

(6)
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aneous

Fig. 2. Instantaneous PDR and exponential moving average of PDR from
node 11 to node 8, when two jammers were turned on and off in sequence.

3) Propagation Models: We have utilized two propagation
models to model the received power of signals: free-space
model and the shadowing model. Due to the simplicity of free
space model, we use it to illustrate the theoretical basis of our
algorithm. However, our experimental validation leverages the
shadowing model, a realistic model that captures the absorption,
reflection, scattering and diffraction in complex propagation
environments.

Free Space Model considers a signal propagated through
free space without obstructions. The received signal power is,

PSR =
PSG

4πd2
, (7)

where PS are the transmission power of the sender; G is
the antenna field patterns in the line-of-sight (LOS) direction
between sender and receiver; and d is the distance between the
sender and the receiver. We note that the sender can either be
a jammer J or a network node ni.

Shadowing Model captures both path loss versus distance
and the random attenuation due to blockage from objects in
the signal path [17]. Let path loss at the receiver that is at the
distance d from the sender be

PL(d) = 10log10
PS

PSR
, (8)

then the shadowing model has the following form:

PL(d) = PL(d0) − 10 · η · log(
d

d0
) + Xσ, (9)

where PL(d0) is the known path loss at a reference distance
d0, η is the Path Loss Exponent (PLE), and Xσ is a Gaussian
zero-mean random variable with standard deviation σ.

IV. COLLECTING NETWORK TOPOLOGY INFORMATION

Our basic idea of localizing multiple jamming attackers is to
estimate the positions of jammers utilizing network topology
changes caused by jammers. Thus, it is essential to capture
the topology differences prior to and after the emergence of
jammers. Section III presents important theoretical underpin-
nings to understand the impact of a jammer to the network.
For instance, the likelihood that ni can receive messages from
nj is determined by signal-to-noise-ratio (SNR) at ni when nj

is transmitting. In practice, however, few wireless devices can
measure SNR. In this section, we present our experimental
study on collecting network topology information in real time

Fig. 3. A snapshot of experiment setup.

and on classifying nodes into three categories: unaffected nodes,
jammed nodes, and boundary nodes. We chose to perform our
study using MicaZ sensor nodes [18] because they provide
access to the entire network stacks. MicaZ sensor nodes have
a 2.4-2.48 GHz Chipcon CC2420 Radio and use TinyOS 2.x
as the operating system.

A. Link State Estimation and Information Collection

We envision that each node updates its neighbor table locally
by measuring the link quality to each individual neighbor, and
reports the neighbor table periodically to a dedicated entity
(e.g., the network sink) that will localize jammers.

We estimated the link quality by measuring the percentage of
packets delivered. Let the instantaneous Packet Delivery Ratio
(PDR) from nj to ni at the kth interval be pk

ij = mr

mt
, where

mt is the total number of packets transmitted from nj to ni

and mr is the total number of packets received at ni at the
kth interval. The link quality can be defined as the exponential
moving average of instantaneous PDRs. The link quality from
nj to ni at the kth interval is

qk
ij =

{
(1 − α)qk−1

ij + αpk
ij Δk

l < β1

αqk−1
ij + (1 − α)pk

ij otherwise,
(10)

where α controls the weight of decreasing older link esti-
mations, Δk

l = maxr∈[1,l] |pk
ij − pk−r

ij |, and β1 defines the
threshold that bounds short term fluctuations. The condition
Δk

l < β1 is for expediting link estimations when the link state
has indeed been changed.

A small α discounts older link estimations more slowly,
and can smooth out short term fluctuations. However, when
a jammer is turned on, it also imposes delays before the
estimation reflects the latest network condition, e.g. jammed.
To address this problem, we examined the instantaneous PDRs
in the past l intervals, and give pk

ij a high weight if the changes
of pk

ij have exceeded the short term fluctuation range, e.g., β1.
Furthermore, we defined the link state from node ni to nj as

lkij =
{

1 qk
ij > β2

0 otherwise
(11)

As an example, Figure 2 shows qk and pk between a pair of
nodes in our experimental network. In our experiment, we set
α = 0.2, β1 = 0.7, l = 2, and β2 = 0.65. We observed that qk

smoothed out the fluctuations when the network status did not
change, but it quickly captured the event that J1 was turned on
at the 30th second and J2 was turned off at the 90th second.
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Unidirectional Link

Unaffected Node
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Jammed Node
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Bidirectional Link
Unidirectional Link
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(a) (b) (c) (d)
Fig. 4. Topology changes as turning on and off J1 placed at the upper-left corner and J2 at the upper-right corner in sequence: (a) no jammers were on, (b)
J1 was turned on at the 30th second, (c) J2 was turned on at the 60th second, and (d) J1 was turned off at the 90th second.

We noted that J2 has a small impact to the link quality, in this
case.

Each node can monitor its link qualities with all its neighbors
and can deliver them to the designated node for jamming
localization. To collect data, we customized a protocol based on
existing Collection Tree Protocol(CTP) implemented in TinyOS
2.x. to glean nodes’ neighbor lists. In particular, a routing tree
rooted at the designated node was built after the network was
deployed, and each node periodically unicasted a data packet
containing its latest neighbor list to the designated node.

B. An Example Walk-Through Using MicaZ

To study the impact of jamming, we deployed 12 nodes in
an indoor environment. To make the network fit the room, we
reduced the communication range to approximately 0.8 meter
by installing a 10 dB attenuator on each Micaz node. We placed
J1 at the upper-left corner and J2 at the upper-right corner,
as shown in Figure 3. We selected node 0 as the designated
node. All nodes periodically report their neighbor list to node
0 through a routing tree rooted at node 0, and node 0 learned
the network topology from the received neighbor lists. As an
example, the network topology prior to turning on any jammer
is depicted in Figure 4(a). A single-headed arrow pointing from
ni to nj indicates lij = 1 and a double-headed arrow represents
a bidirectional link, e.g., lij = lji = 1. We note that all links
in the networks are bidirectional without the interference from
jammers.

We turned on the first jammer J1 at the 30th second, the
second jammer J2 at the 60th second, and turned off J1 at the
90th second. The network topologies for each stage are depicted
in Figure 4, from which we had the following observations:

• Some of the links are no longer bidirectional because of
jamming. For instance, the link state from node 8 to node
11, l8,11, is connected as shown in Figure 4 (a), but l11,8

is not after J1 is on 1.
• The experiments confirmed our analysis about the effects

of multiple jammers on network topology changes, and
suggested that the network is able to identify the order
that two jammers become active. In particular, once we
turned on J1 in the upper-left corner, as shown in Figure 4

1Although the link from node 11 to node 8 is not connected when J1 is
active, node 11 can still deliver few packets to node 8 occasionally to report
its neighbor list. Thus, node 0 is aware that l8,11 = 1

(b), nodes {5, 7} become boundary nodes, since they can
still receive messages but lost some of their neighbors.
After J2 was turned on, as shown in Figure 4 (c), nodes
{5, 7} changed into jammed nodes, because they can no
longer receive messages from any of their neighbors. After
we turned off J1, node 5 regained its ability to deliver
messages to others and became a boundary node, but node
7 remained to be jammed, as shown in Figure 4 (d).

• Interestingly, we found that node 5 was not a jammed
node when only one jammer was active, and became a
jammed node when both jammers were turned on. Thus,
N1

J ∩ N2
J �= N1,2

J , which makes the task of localizing
multiple jammers challenging.

V. LOCALIZING MULTIPLE JAMMERS

Our experimental results suggest that we are able to collect
the network topology changes in spite of the disturbed network
communication under jamming. In this section, we discuss our
framework that can localize multiple jammers by exploiting
the collected network topology changes. We note that this
framework can be implemented at the network sink where all
the network neighborhood information is reported, but is not
limited to it. Furthermore, each node monitors the network
topology changes by measuring the beacons required by most
routing protocols, and our localization algorithm involves each
affected node reporting its neighbor changes in one message.
Thus, the additional communication overhead is proportional
to the affected nodes.

Our framework consists of two components: automatic net-
work topology partitioner and intelligent multi-jammer lo-
calizer. The automatic network topology partitioner system-
atically divides the nodes into three categories: unaffected
nodes, jammed nodes, and boundary nodes. Then it forms two
types of clusters: jammed clusters (JCs) and boundary clusters
(BCs). The intelligent multi-jammer localizer localizes multiple
jammers by utilizing the results from the network topology
partitioner. We detail these two components in the following
subsections and summarize the notations in table I.

A. Automatic Network Topology Partitioner

Once the jamming is detected utilizing one of the existing
jamming detection approaches, our automatic network topology
partitioner will classify network nodes into different categories
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Variable or Function Description

N i
J Jammed nodes when ith jammer is on;

N i
B Boundary nodes when ith jammer is on;

G Neighborhood adjacency matrix;
JC The clusters of jammed nodes;
BC The clusters of boundary nodes;
Ĵi The estimated position of ith jammer;
MST () Minimum spanning tree method;
Centroid() Centroid-based method;
AdaptiveLSQ() Adaptive Least Squares method;
Mirroring() Mirroring method;
Gauss − Newton( ) Gauss-Newton searching method;

TABLE I
NOTATION SUMMARY.

(a) without jamming (b) with jamming
Fig. 5. A network example to show the neighborhood adjacency matrix.

and further form two types of clusters: jammed clusters (JCs)
and boundary clusters (BCs). Typically, there will be one
distinct jammed cluster (JC) and one distinct boundary cluster
(BC) formed around a jammer, and we developed a Minimum
Spanning Tree (MST) based topology partitioning method to
identify them.

MST-based topology partitioning. We formulate the net-
work into a connected, undirected graph, which is represented
by a neighborhood adjacency matrix G [19]. The graph is
undirected because each communication link between nodes is
bi-directional under normal situations without jamming. In the
neighborhood adjacency matrix G, if two nodes are neighbors,
the corresponding element in the matrix is set to 1, otherwise,
it is 0. Given a connected, undirected graph, a spanning tree
of that graph is a subgraph which is a tree connecting all the
vertices together. Further, a MST [19] is a spanning tree with
total weight less than or equal to the weight of every other
spanning trees, and the Dijkstra’s algorithm can obtain the
minimum spanning trees.

To identify BCs and JCs, we define subgraphs GNJ and GNB

containing all jammed and boundary nodes, respectively. To
illustrate the relationship among G, GNJ and GNB , we use a
network with 6 nodes depicted in Figure 5. And the 6 × 6
neighborhood matrix G of this network is:

G =

⎡
⎢⎢⎣

1 1 0 0 0 1
1 1 1 0 1 0
0 1 1 1 1 0
0 0 1 1 0 1
0 1 1 0 1 0
1 0 0 1 0 1

⎤
⎥⎥⎦ .

The rows and columns in G correspond to the node IDs.
For example, G(1, 2) = 1 represents a link existing between
Node 1 and 2, whereas G(1, 3) = 0 indicates Node 1 and 3
are disconnected. Under jamming, there are 3 jammed nodes
i.e, 1, 4 and 6, and 2 boundary nodes, 2 and 3. Thus, the

−150 −100 −50 0 50 100
−100

−50

0

50

100

150

(meter)

(m
et

er
)

 

 

Jammed Node
Boundary Node
Unaffected Node
Jammer
Edge of Jammed Cluster
Edge of Boundary Cluster

Fig. 6. Clusters for jammed nodes and boundary nodes: the nodes connected
by black solid lines form a jammed cluster through an MST, whereas those
nodes connected by red dashed lines belong to the boundary cluster.

jammed node ID vector INJ = [1, 4, 6], and boundary node
ID vector INB = [2, 3]. GNJ and GNB are sub-matrices of
G formed by selecting rows and columns indexed by INJ and
INB , respectively.

GNJ
= G[INJ

; INJ
] =

[
1 0 1
0 1 1
1 1 1

]
.

GNB
= G[INB

; INB
] =

[
1 1
1 1

]
.

Since boundary nodes are mostly surrounding jammed nodes,
they may not form a proper cluster by themselves. To derive
the proper number of BCs, instead of using GNB , we use
GNJ&NB , which is a submatrix of G formed by selecting rows
and columns indexed by INJ ∪ INB :

GNJ&NB
= G[INJ

∪ INB
; INJ

∪ INB
] =

⎡
⎢⎣

1 0 1 0 1
0 1 1 0 1
1 1 1 1 0
0 0 1 1 1
1 1 0 1 1

⎤
⎥⎦ .

The MST-based topology partitioning method is shown in
Algorithm 1. In particular, we derive the JC by applying
Dijkstra’s algorithm to GNJ . To form the BC, we start with
either a boundary node or a jammed node in GNJ&NB and
construct a combined MST containing both jammed nodes and
boundary nodes. Then, we obtain the BC by eliminating the
jammed nodes from the combined MST. Figure 6 presents an
example of the formed JC and the BC after applying the MST-
based topology partitioning method. The nodes connected by
black solid lines form a JC, and those nodes connected by red
dashed lines belong to the BC. As Figure 6 indicates, boundary
nodes may not form a proper cluster by themselves, and the BC
has to be formed with the assistance of jammed nodes.

Algorithm 1 MST-based topology partitioning.
Require: INPUT:

GNJ
, GNJ&NB

OUTPUT:
JC, BC
PROCEDURES:

1: JC = MST (GNJ
)

2: {BC&JC} = MST (GNB&NJ
)

3: BC = {BC&JC}|JC
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Node clustering analysis based on jammers’ distance.
We consider a two-jammer example as a case study. We note
that the cases of more than two jammers may result in a
richer set of clustering results but share the same basic idea
as two-jammer ones. When the distance between two jammers
are large, the jamming regions of each jammer are disjoint.
One jammed cluster and one boundary cluster are formed
around each jammer, and resulting in two jammed clusters and
two boundary clusters (2JC-2BC) as depicted in Figure 7 (a).
However, when two jammers are resided close to each other,
they may have overlapping jamming regions and form only one
connected jammed area. Depending on how close two jammers
are, two scenarios are possible. The first one is two jammed
clusters and one boundary cluster (2JC-1BC), as shown in
Figure 7 (b). When two jammers are located close by, the two
boundary clusters are merged into one, but the two jammed
clusters are still distinguishable. The second one is one jammed
cluster and one boundary cluster (1JC-1BC), as depicted in
Figure 7 (c). When two jammers are placed even closer, the
two jammed clusters merge into one jammed cluster.

MST-based topology partitioning method can identify all
aforementioned cases: 2JC-2BC, 2JC-1BC, and 1JC-1BC. The
diversity of clustering results makes it challenging to localize
multiple jammers. In the case of 2JC-2BC, algorithms for lo-
calizing one jammer can be applied to determine both jammers’
location. However, when two jammers are resided close to each
other and form 2JC-1BC or 1JC-1BC, algorithms for single-
jammer scenarios are no longer applicable. To address this
challenge, we build intelligent multi-jammer localizer which
takes the topology partitioning results and can localize jammers
regardless whether two jammers have overlapping jammed
areas or not.

B. Intelligent Multi-jammer Localizer

Continuing with the two-jammer example, to localize multi-
ple jammers, our framework is designed to perform intelligent
localization based on three possible classification outcomes
returned from the automatic network topology partitioner: 2JC-
2BC, 2JC-1BC, and 1JC-1BC. Moreover, we develop two sets
of solutions, one possesses the prior knowledge of the order
that the jammers are turned on, referred as sequentially turning
on; and the other does not have any prior knowledge about
the order that the jammers are turned on, which makes the
system consider that the jammers are turned on simultaneously.
The jamming effects with sequentially turning on jammers and
simultaneously turning on jammers are presented in Section III
and are used as prior knowledge for the intelligent multi-
jammer localizer.

Basic algorithms to localize a single jammer. We start by
introducing two localization algorithms used to estimate the
position of a single jammer: Centroid-based [9] and Adaptive
LSQ [11]. Both algorithms work even when the network com-
munication is disturbed by jamming, and they utilize affected
network topology to perform localization.

Centroid-based. The Centroid-based localization method es-
timates a single jammer’s position (x̂J , ŷJ) by averaging over

the coordinates of all jammed nodes belonging to the corre-
sponding jammed cluster formed around the single jammer.
Consider that there are M jammed nodes {(xm, ym)}m=1...M ,
the position of the jammer can be estimated by Centroid-based
localization as:

Ĵ = (x̂J , ŷJ) = (
∑M

m=1 xm

M
,

∑M
m=1 ym

M
). (12)

Adaptive LSQ. The Adaptive LSQ exploits the formation of
the boundary cluster and uses a node (e.g., boundary node)’s
neighbor list changes under jamming to estimate the jammer’s
location. We describe the main component of Adaptive LSQ
in this paper and refer readers to our prior work [11] for a
complete algorithm description.

In summary, we formed a least squares problem to estimate
the position and transmission power of the jammer:

v̂ = [x̂J , ŷJ , P̂J ]T = (AT A)−1AT b. (13)

where A and b are matrices depending on the position of M
boundary nodes {(xm, ym)}m=1...M and their hearing range
{rhm}m=1...M , i.e., the range within which they can receive
packets from other nodes, respectively.

A =

⎛
⎜⎝

x1 − 1
M

∑
M

m=1
xm y1 − 1

M

∑
M

m=1
ym

1
2 (C(rh1 ) − CΣ)

.

.

.
.
.
.

.

.

.

xM − 1
M

∑
M

m=1
xm yM − 1

M

∑
M

m=1
ym

1
2 (C(rhM

) − CΣ)

⎞
⎟⎠

b =

⎛
⎜⎝

(x2
1 − 1

M

∑M

m=1
x2

m) + (y2
1 − 1

M

∑M

m=1
y2

m)

.

.

.

(x2
M − 1

M

∑
M

m=1
x2

m) + (y2
M − 1

M

∑
M

m=1
y2

m)

⎞
⎟⎠

and

C(rhm) =
γ0r

2
hm

PS − 4πγ0PN

G r2
hm

, CΣ =
1
M

M∑
m=1

C(rhm).

Centroid-based vs. Adaptive LSQ. According to our prior
work, the Adaptive LSQ is more likely to provide better
estimation of the jammer’s location than the Centroid-based
method, because Centroid-based is sensitive to the distribution
of jammed nodes. However, such a conclusion is only valid
under the assumption of a single jammer. When multiple jam-
mers are present, it is sometimes difficult, even impossible, to
identify which jammer or jammers disturb the communication
of the boundary nodes. Thus, it is non-trivial to construct A
and b for jammer localization using Adaptive LSQ. In those
cases, Centroid-based method will perform better.

Localize multiple jammers. After introducing two basic
algorithms, we present our intelligent multi-jammer localizer,
which can localize multiple jammers based on the cluster-
ing results from automatic network topology partitioner. The
algorithmic flow of our intelligent multi-jammer localizer is
displayed in Algorithm 2 by using two-jammer as an example.
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Fig. 7. Illustration of the clustering results obtained from the MST-based topology partitioning met hod when two jammers are placed at various distances.

1) 2JC-2BC: When distinct jammed cluster and boundary
cluster for each individual jammer are returned from the MST-
based topology partitioning method, the Adaptive LSQ method
can be directly applied to localize each jammer when multiple
jammers are present. In particular, two independent least square
problems can be formed using the information of either BC to
localize two jammer independently.

2) 2JC-1BC: When two jammers are nearby, only one BC
is returned from the network topology partitioner. Depending
on the availability of the prior knowledge of the timing that
jammers become available, we consider two cases,

• Sequentially turning on: The position of the first jammer
is estimated by the Adaptive LSQ method utilizing the
returned first portion of the BC when the first jammer
is on. When the second jammer is turned on, because
only one BC is formed which contains all boundary
nodes caused by two jammers, the Adaptive LSQ method
cannot be applied to estimate the position of the second
jammer. Our framework turns to examine the two JCs
and calculates the second jammer’s position by using the
Centroid-based algorithm based on the JC related to the
second jammer.

• Simultaneously turning on: Adaptive LSQ cannot be used
to determine the positions of two jammers since there
is only one BC returned. Our framework then resorts to
utilize the information from the two returned JCs and
apply the Centroid-based algorithm to each JC and obtain
the location estimation of each jammer.

3) 1JC-1BC: The most challenging scenario is that only
one jammed cluster and one boundary cluster are returned
by the MST-based topology partitioning when two jammers
appear in a close proximity. This makes neither Adaptive
LSQ nor Centroid-based methods sufficient for localizing either
jammer’s position. To solve this problem, we develop two new
algorithms: the Mirroring algorithm for the scenario that our
framework knows the information about sequentially turning on
jammers, and the Gauss-Newton Searching algorithm when our
framework does not have the prior knowledge, instead, treating
two jammers simultaneously turned on. We next describe these
two algorithms under two different cases of the order that
jammers are turned on.

Mirroring algorithm. When two jammers are sequentially
turned on, the first jammer’s location can be estimated by
applying Adaptive LSQ to the portion of BC when only the

first jammer is on. To localize the second jammer’s position
after it is on, since only one connected jammed area is formed,
our assumption about the omni-direction characteristic of the
propagation model and the uniform distribution of the nodes in
the network implies that the two jammers will be at symmetric
positions with respect to the center of the jammed region. Thus,
the Mirroring algorithm uses the location estimation of the
first jammer Ĵ1, and applies the Adaptive LSQ to the whole
jammed area to obtain a position estimation Ĵ based on the
single boundary cluster. Based on our assumption, the second
jammer’s position Ĵ2 can be estimated as a symmetric position
of Ĵ1 with respect to the position estimation Ĵ :

Ĵ2 = Ĵ − (Ĵ1 − Ĵ). (14)

Gauss-Newton Searching algorithm. When the jammers’
turning-on sequence is not available, our framework treats
two jammers being turned on simultaneously. 1JC-1BC makes
estimating each jammer’s position especially hard. We propose
a method grounded on Gauss-Newton Searching to localize
each jammer’s position.

Let v be the variable vector of the two jammers’ positions and
transmission power, i.e., v = (xJ1 , yJ1, xJ2 , yJ2 , PJ ). Given
M boundary nodes {(xm, ym)}m=1...M , we define m residual
functions frm of v, i.e.,

frm : R
5 → R

Let v̂ be the estimated value of v. When the estimated positions
of the jammers are equal to their true locations, i.e., v̂ = v,
all M residual functions become 0 under the assumption of
free space model. Thus, estimating the position of jammers is
equivalent to minimizing the sum of squares of frm(v):

v̂ = argmin
v

S(v) = argmin
v

M∑
m=1

f2
rm

(v) (15)

Now, we discuss the definition of frm , and show frm =
0 if v̂ = v using the free-space propagation model. Let rhm

be the range within which the boundary node m can receive
packets from other nodes, e.g., any transmitter i within rhm of
m has SNRmi ≥ γ0 where γ0 is the decodable SNR threshold.
Applying the free space propagation model to Equation 4, we
obtain M equations for m = 1 . . .M :

PSG

4πr2
hm

PN +
PJ G

4πd2
J1Rm

+
PJ G

4πd2
J2Rm

= γ0, (16)
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where
d2

J1Rm
=(xm − xJ1)2 + (ym − yJ1)2

d
2
J2Rm

=(xm − xJ2)
2

+ (ym − yJ2)
2
.

(17)

After manipulating Equation 16, we obtain the following
equation:

PJ (d2
J1Rm

+ d2
J2Rm

) − Cmd2
J1Rm

d2
J2Rm

= 0, (18)

where Cm = PS

r2
hm

γ0
− 4πPN

G . By applying Equation 17 to

Equation 18, we have the following equations,

PJ ((xm − xJ1 )2 + (ym − yJ1)2 + (xm − xJ2)2 + (ym − yJ2 )2)

− Cm((xm − xJ1)2 + (ym − yJ1 )2)((xm − xJ2)2 + (ym − yJ2)2) = 0

(19)
Motivated by the above equation, we define frm(v) as,

frm (v) =PJ ((xm − xJ1)2 + (ym − yJ1 )2 + (xm − xJ2)2 + (ym − yJ2)2)

−Cm((xm − xJ1)
2

+ (ym − yJ1)
2
)((xm − xJ2)

2
+ (ym − yJ2)

2
).

(20)
In ideal free space, when the hearing range of the boundary

node m is a circle and we can accurately estimate it, frm equals
0. However, in practice, the hearing range is irregular and the
estimated range r̂hm for boundary node m is inaccurate. Thus,
typically frm �= 0 and the objective function S(v) cannot reach
0 as well, and we search for the best location estimation that
minimizing S(v).

We next describe our iterative searching method to find the
solution that minimizes the objective function S(v). Starting
with an initial guess v0 for the minimum, the method proceeds
by iterations until it converges. For each iteration step:

vs+1 = vs + δ (21)

where the increment δ is the solution to the normal equations:

(JT
f Jf)δ = −JT

f f. (22)

Here, f is the vector of functions frm(v), i.e.,
[fr1(v), · · · , frM (v)] and Jf is the M × 5 Jacobian matrix of f
with respect to v as shown:

Jf =

⎡
⎢⎢⎢⎢⎣

∂fr1 (v)
∂xJ1

∂fr1(v)
∂yJ1

∂fr1 (v)
∂xJ2

∂fr1 (v)
∂yJ2

∂fr1 (v)
∂PJ

∂fr2 (v)
∂xJ1

∂fr2(v)
∂yJ1

∂fr2 (v)
∂xJ2

∂fr2 (v)
∂yJ2

∂fr2 (v)
∂PJ

· · · · · · · · · · · · · · ·
∂frM

(v)
∂xJ1

∂frM
(v)

∂yJ1

∂frM
(v)

∂xJ2

∂frM
(v)

∂yJ2

∂frM
(v)

∂PJ

⎤
⎥⎥⎥⎥⎦ .

After each iteration, vs+1 would be substituted into function
S(v). Once S(v) becomes less than the predefined threshold,
e.g., Sδ , the estimated values (x̂J1 , ŷJ1 , x̂J2 , ŷJ2) at the last
iterative round will be the final estimated position of the two
jammers.

Initial estimated jammers’ position. To start Gauss-Newton
searching, the initial estimated positions of the two jammers,
Ĵ1 and Ĵ2, need to be chosen. We first calculate a temporary
position Ĵ by applying Centroid-based method on the JC. We
then find the farthest jammed node JFar from Ĵ . The initial
Ĵ1 and Ĵ2 can then be obtained as:

Ĵ1 =
1
2
× (Ĵ + JFar), Ĵ2 = Ĵ − (Ĵ1 − Ĵ) (23)

By substituting the initial estimated positions into Equations 20
the Gauss-Newton based searching method will start to iterate
until the algorithm converges.

Algorithm 2 Localizing multiple jammers (by using two jam-
mers as an example)
Require: INPUT:

JC, BC, BCSeq,1; (Note: BCSeq,1 represents the boundary cluster
formed by the first jammer in sequentially turning on case)
OUTPUT:
Ĵi, i = 1, 2;

1: PROCEDURES:
2: if ‖JC‖ == 2 and ‖BC‖ == 2 then
3: For Sequentially Turning On:
4: Ĵ1 = AdaptiveLSQ(BCSeq,1); Ĵ2 = AdaptiveLSQ(BC2).
5: For Simultaneously Turning On:
6: Ĵi = AdaptiveLSQ(BCi), i =1, 2.
7: else if ‖JC‖ == 2 and ‖BC‖ == 1 then
8: For Sequentially Turning On:
9: Ĵ1 = AdaptiveLSQ(BCSeq,1); Ĵ2 = Centroid(JC2).

10: For Simultaneously Turning On:
11: Ĵi = Centroid(JCi), i =1, 2.
12: else
13: For Sequentially Turning On:
14: Ĵ1 = AdaptiveLSQ(BCSeq,1); Ĵ2 = Mirroring(BC, Ĵ1).
15: For Simultaneously Turning On:
16: Initialization: Ĵ = Centroid(JC), Ĵ1 = 1

2
× (Ĵ + JF ar), Ĵ2 =

Ĵ − (Ĵ1 − Ĵ);
17: Iteration: {Ĵ1, Ĵ2} = Gauss − Newton(Ĵ1, Ĵ2, BC).
18: end if

C. Localizing More than Two Jammers

Our localization framework can be extended to localize more
than two jammers, and the extended framework will also consist
of two components: automatic network topology partitioner and
intelligent multi-jammer localizer. We note that localizing more
than two jammers requires no modification of the automatic
network topology partitioner, but may produce a wider variety
of clustering results, e.g., 3JC-3BC. As a result, the intelligent
multi-jammer localizer requires slight modification to cope with
the new clustering results but the building blocks for jammer
localization are the same. For example, in the case of 3JC-3BC,
each JC can be paired up with one BC, and Adaptive LSQ can
be applied to localize each jammer based on the information
of the corresponding JC-BC pair. Detailed modification will be
reported in our future work.

VI. SIMULATION EVALUATION

A. Simulation Setup and Performance Metrics

To validate the effectiveness of our framework, in an area
of 1000-by-1000 square meters, we generated 1000 different
network topologies with 2000 nodes and 3000 nodes, respec-
tively. The nodes are placed to cover the entire deployment
region uniformly and the minimum distance between any pair
of nodes is bounded by a threshold. To study the effects of
multiple jammers, we presented the results of two jammers
with the jammers’ transmission range set to 60m, and the
decodable SNR threshold γ0 set to 1.1. To emulate real-world
scenarios, we developed our simulation under the shadowing
model and we tuned the parameters in the shadowing model

525



100 200 300 400 500

1

1.2

1.4

1.6

1.8

2

Distance between jammers (meter)

A
v
e
ra

g
e
d
 n

u
m

b
e
r 

o
f 
c
lu

s
te

rs

 

 

Jammed Cluster
Boundary Cluster

100 200 300 400 500

1

1.2

1.4

1.6

1.8

2

Distance between jammers (meter)

A
v
e
ra

g
e
d
 n

u
m

b
e
r 

o
f 
c
lu

s
te

rs

 

 

Jammed Cluster
Boundary Cluster
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Fig. 8. Node topology partitioning study: average number of clusters as
a function of the distance between two jamemrs (2000-node and 3000-node
deployment with node transmission range setting to 30m).

with those obtained from our empirical experimental study [11].
In particular, we set the path loss exponent η = 2.11 and the
standard deviation σ = 1.0.

To evaluate the accuracy of localizing the jammers, we
defined the localization error as the Euclidean distance between
the estimated jammer’s location and the true location. To
capture the statistical characteristics, we studied the average
errors under multiple experimental rounds and we utilized the
median error and the Cumulative Distribution Function(CDF)
of the localization error as our validation metrics.

B. Results

1) Node Topology Partitioning Study: We first studied the
results of automatic network topology partitioner when varying
the distance between two jammers. Figure 8 depicts the aver-
age number of clusters obtained from our network topology
partitioner as a function of the distance between jammers in
a 2000-node network and a 3000-node network, when setting
each node’s transmission range to 30m. We observed that both
the number of JC and BC starts from 1 when two jammers
are placed closely, and then jumps to 2 when two jammers are
moving away from each other. Particularly, 2JC-2BC is returned
when the distance LJ > 200m in both networks, and 1JC-1BC
is returned when LJ < 100m in the 2000-node network and
LJ < 75m in the 3000-node network, respectively. Finally, all
three clustering results are possible when LJ falls in between.
This observation confirms that our network topology partitioner
works flexibly when the distance between jammers varies.

2) Localization Algorithm Selection Study: We next exam-
ined how our multi-jammer localizer reacts when the distance
between two jammers varies. We plotted the percentage of
the basic localization algorithm usage within our multi-jammer
localizer in Figure 9 when the distance of two jammers LJ is set
to 500m, 100m, and 50m, respectively. When the two jammers
are 500m away and the partitioner returns 2JC-2BC as indicated
by Figure 9, we observed that our multi-jammer localizer uses
Adaptive LSQ to perform localization all the time.

When the two jammers are placed close by, around LJ =
100m, the usage of basic localization algorithms changes: In
the 2000-node deployment, the mirroring algorithm or Gauss-
Newton Searching method dominates and conducts localiza-
tion 98%. This is because 1JC-1BC is classified by topology
partitioner for 98% of the jamming scenarios. Whereas under

500 100 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Distance Between Jammers (meter)

A
lg

o
ri
th

m
 P

e
rc

e
n

ta
g

e

 

 

Mirroring or Gauss−Newton Searching
Centroid
Adaptive LSQ

500 100 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Distance Between Jammers (meter)

A
lg

o
ri
th

m
 P

e
rc

e
n

ta
g

e

 

 

Mirroring or Gauss−Newton Searching
Centroid
Adaptive LSQ

(a) 2000-node (b) 3000-node
Fig. 9. Usage of localization algorithms in our multi-jammer localizer with
node transmission range setting to 30m.
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Fig. 10. Cumulative Distribution Function(CDF) of localization error with
LJ = 500m and node transmission range setting to 30m.

the 3000-node deployment, the usage of the Centroid-based
method is about 60%, and the mirroring algorithm and Gauss-
Newton Searching method is about 40%, which is supported
by Figure 9 (b), i.e., over half of the jamming scenarios are
classified as 2JC-1BC and less than half is classified as 1JC-
1BC. Finally, when the jammers are close to each other (i.e.,
LJ = 50m), the usage of the mirroring algorithm and Gauss-
Newton Searching method is over 99%, matching with 1JC-
1BC topology partitioning case.

3) Impact of Distance between Jammers: We next investi-
gate the effectiveness of localization when the distance between
jammers varies. In particular, we examined the localization
accuracy when LJ = 500m, 100m, and 50m, and show the
results in Figures 10, 11 and 12, respectively.

500 meters. This is the case with 2JC-2BC in which the two
boundary clusters are distinct. The Adaptive LSQ method is
applied by our multi-jammer localizer to perform localization.
In general, the accuracy of localizing both jammers is about the
same with overlapping curves showing Cumulative Distribution
Function (CDF) in Figure 10. The localization performance
under 3000-node deployment is 60% better than that under
2000-node one. Particularly, when the jammers are sequentially
turning on, the median errors are around 6.9m for 2000-node
case and 3.7m for 3000-node case, respectively. When the
order of turning on jammers is unavailable, i.e., simultaneously
turning on, the median error of two jammers is similar to
the case when the order information is available. This is
encouraging as it indicates that our multi-jammer localizer
can achieve the similar performance even without the prior
knowledge of the order.

100 meters. This is the case when we had a mixture cases
of 2J-1B and 1J-1B resulted from the network topology par-
titioner. Overall, as Figure 11 shows, the localization results
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Fig. 11. Cumulative Distribution Function(CDF) of localization error with
LJ = 100m and node transmission range setting to 30m.

of the sequentially-turning-on cases outperform those of the
simultaneously-turned-on cases by about 50% improvement.
The localization accuracy exhibits a better performance of over
40% in the 3000-node deployment than the one in the 2000-
node deployment: When jammers are sequentially turned on,
the median error is around 3.6m for the 3000-node case, where
as it becomes 6.3m for the 2000-node case. We also found that
localization of the second jammer performs slightly worse than
that of the first jammer because the JC related to the second
jammer is interfered by the first jammer when two jammers are
located close by.

50 meters. Finally, we examined the localization accuracy
when the distance between two jammers is 50m. This maps
to the case of 1JC-1BC. Again, we observed that localization
with prior knowledge achieves better performance than that
without the prior knowledge, as indicated in Figure 12. In
particular, under the 3000-node deployment, the localization
error is only 3.9m when the jammers are sequentially turned on,
while the error is 7.5m when the jammers are simultaneously
on. Such performance difference is caused by the fact that both
the jammed cluster and the boundary cluster of two jammers
are largely overlapping due to the close proximity of the two
jammers, making it extremely hard to locate each individual
jammer without prior knowledge.

We note that in practice the attackers may not desire to
place two jammers in vicinity as it reduces the overall jamming
effects in the network. Instead, the attackers would prefer to
place two jammers farther away from each other to cause
network communication disturbance in a large area.

4) Impact of Node Transmission Range: We studied the ef-
fect of node transmission range on the localization accuracy by
setting the node transmission range to {35m, 45m, 55m} and
setting the distance between jammers to {500m, 100m, 50m},
respectively. Table II summarizes the distribution of clustering
results, i.e., 2JC-2BC, 2JC-1BC, and 1JC-1BC, for all settings.
The corresponding median error of localization is presented in
Figure 13. In general, the node transmission range changes do
not affect the localization performance much when jammers
are treated as sequentially turned on. The localization error is
always between 3m - 4m. However, when jammers are treated
as simultaneously turned on, the localization accuracy under
LJ = 500m degrades as the node transmission range increases,
whereas the performance under LJ ≤ 100m improves with the
increasing node transmission range.
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Fig. 12. Cumulative Distribution Function(CDF) of localization error with
LJ = 50m and node transmission range setting to 30m.

This is because when the distance between jammers is large,
the intelligent multi-jammer localizer chooses Adaptive LSQ to
localize jammers. When the node transmission range increases,
the number of boundary nodes reduces, and the number of
constraints for Adaptive LSQ method also decreases, which
results in the degradation of localization accuracy. However,
under smaller distances LJ , the dominant algorithms selected
by the intelligent multi-jammer localizer are Centroid-based
algorithm, Mirroring, and Gauss-Newton Searching method. As
the node transmission range increases, the interference between
each jammer’s JC (or BC) decreases. Thus, the localization
performance is improved.

Specifically, when LJ = 500m, Adaptive LSQ dominates
and the localization accuracy is around 3.5m when the node
transmission range varies for both cases of sequentially and
simultaneously turning on jammers as shown in Figure 13 (a).

When LJ = 100m, Centroid-based method dominates and
performs localization for over 75% of scenarios as displayed
in Table II. When two jammers are sequentially turned on,
the localization error is between 3.2m - 4m as shown in
Figure 13 (b), and the localization accuracy of the second
jammer underperforms that of the first jammer. This is because
the jammed cluster formed by the second jammer is interfered
by the first jammer when two jammers are placed close by.
As the node transmission range increases, the interference is
weakened. When two jammers are simultaneously turned on,
the localization error presents a decreasing trend, from 5m to
4m, when the node transmission range increases. This indicates
that the increasing node transmission range can improve the
localization performance.

Finally, when LJ = 50m, it is the case of 1JC-1BC, whereby
Mirroring algorithms is selected for sequentially-turning-on
cases and Gauss-Newton Searching method is selected for
simultaneously-turning-on cases. As shown in Figure 13 (c),
when jammers are sequentially turned on, the localization
conducted by the dominating Mirroring algorithm achieves the
similar performance (around 3.5m) to that of when LJ =
500m. When jammers are simultaneously turned on, the median
localization error via Gauss-Newton Searching method reduces
from 5.5m to 3.1m when the node transmission range increases
from 35m to 55m, suggesting that the Gauss-Newton Searching
method can also benefit from larger node transmission ranges.
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Fig. 13. Median localization error as a func tion of the node transmission range under the3000-node deployment.

LJ (m) Node Trans. Range (m) 2JC-2BC 2JC-1BC 1JC-1BC

500
35 100% 0% 0%
45 100% 0% 0%
55 100% 0% 0%

100
35 0% 77% 23%
45 0% 92.4% 7.6%
55 0% 87.9% 12.1%

50
35 0% 0% 100%
45 0% 0% 100%
55 0% 0% 100%

TABLE II
DISTRIBUTION OF NUMBER OF CLUSTERS WITH VARIOUS NODE

TRANSMISSION RANGES UNDER DIFFERENT JAMMERS’ DISTANCES.

VII. CONCLUSION

In this paper, we addressed the problem of localizing jam-
ming attackers when multiple jammers are present in a wireless
network. Our jammers can be intentional jamming attackers
and unintentional radio interfers coexisting in the network.
We proposed to identify the physical position of jammers by
leveraging the network topology changes caused by jamming.
In particular, we studied the jamming effects under multiple
jammers and developed a framework that can perform critical
tasks of automatic network topology partitioning and intelligent
multi-jammer localization. Our approach does not depend on
measuring signal strength inside the jammed area, nor does it
require to deliver information out of the jammed area. Instead,
our framework uses the disturbed network communication and
derives node clusters for jammer localization grounded on
network topology changes.

Our experimental results on a multi-hop network using
MicaZ sensor nodes showed that we can successfully collect
real-time network topology changes under jamming, and thus
confirmed the feasibility of applying our approach in practice.
In addition to utilize the existing jammer localization algo-
rithms, e.g., Adaptive LSQ and Centroid-based methods, we
developed two new algorithms, namely Mirroring and Gauss-
Newton Searching algorithms, that are particularly effective
when multiple jammers create one connected jamming area.
We evaluated the performance of our multi-jammer local-
izer through simulation using large-scale network setups with
various distances between jammers. Our simulation results
indicated that the multi-jammer localizer can intelligently use
appropriate localization strategies to estimate the position of
jammers and achieve comparable accuracy to localize a single
jammer.
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